Course Overview
Course Content
- What is Big Data?
- Big Data Customer Scenarios
- Limitations and Solutions of Existing Data Analytics Architecture with Uber Use Case
- How Hadoop Solves the Big Data Problem?
- What is Hadoop?
- Hadoop’s Key Characteristics
- Hadoop Ecosystem and HDFS
- Hadoop Core Components
- Rack Awareness and Block Replication
- YARN and its Advantage
- Hadoop Cluster and its Architecture
- Hadoop: Different Cluster Modes
- Hadoop Terminal Commands
- Big Data Analytics with Batch & Real-time Processing
- Why Spark is needed?
- What is Spark?
- How Spark differs from other frameworks?
- Spark at Yahoo!
- Hands-On
- Challenges in Existing Computing Methods
- Probable Solution & How RDD Solves the Problem
- What is RDD, It’s Operations, Transformations & Actions
- Data Loading and Saving Through RDDs
- Key-Value Pair RDDs
- Other Pair RDDs, Two Pair RDDs
- RDD Lineage
- RDD Persistence
- WordCount Program Using RDD Concepts
- RDD Partitioning & How It Helps Achieve Parallelization
- Passing Functions to Spark
- Hands-On
- Need for Kafka
- What is Kafka?
- Core Concepts of Kafka
- Kafka Architecture
- Where is Kafka Used?
- Understanding the Components of Kafka Cluster
- Configuring Kafka Cluster
- Kafka Producer and Consumer Java API
- Need of Apache Flume
- What is Apache Flume?
- Basic Flume Architecture
- Flume Sources
- Flume Sinks
- Flume Channels
- Flume Configuration
- Integrating Apache Flume and Apache Kafka
- Hands-On
- Drawbacks in Existing Computing Methods
- Why Streaming is Necessary?
- What is Spark Streaming?
- Spark Streaming Features
- Spark Streaming Workflow
- How Uber Uses Streaming Data
- Streaming Context & DStreams
- Transformations on DStreams
- Describe Windowed Operators and Why it is Useful
- Important Windowed Operators
- Slice, Window and ReduceByWindow Operators
- Stateful Operators
- Hands-On